myelin - definitie. Wat is myelin
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is myelin - definitie

PROTEIN FAMILY; PART OF MYELIN SHEATH
Myelin sheath; Myelin Sheath; Myelinated; Myelin proteins; Demyelinating; Myelin Sheeth; Myelination; Medullary sheath; Myelinization; Unmyelinated; Myelinisation; Wikipedia talk:Articles for creation/Myelinisation; Myelin Sheaths; Dysmyelination; Myelin sheaths; Medullated; Medullate; Demyelinate; Myelinate; Hypomyelination
  • [[Neurilemma]]}}
  • Action potential propagation in myelinated neurons is faster than in unmyelinated neurons because of [[Saltatory conduction]].

Myelin         
·noun One of a group of phosphorized principles occurring in nerve tissue, both in the brain and nerve fibers.
II. Myelin ·noun A soft white substance constituting the medullary sheats of nerve fibers, and composed mainly of cholesterin, lecithin, cerebrin, albumin, and some fat.
myelin         
['m???l?n]
¦ noun Anatomy & Physiology a whitish fatty substance forming a sheath around many nerve fibres.
Derivatives
myelinated adjective
myelination noun
Origin
C19: from Gk muelos 'marrow' + -in1.
Myelin         
Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it.

Wikipedia

Myelin

Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However, unlike the plastic covering on an electrical wire, myelin does not form a single long sheath over the entire length of the axon. Rather, myelin sheaths the nerve in segments: in general, each axon is encased with multiple long myelinated sections with short gaps in between called nodes of Ranvier.

Myelin is formed in the central nervous system (CNS; brain, spinal cord and optic nerve) by glial cells called oligodendrocytes and in the peripheral nervous system (PNS) by glial cells called Schwann cells. In the CNS, axons carry electrical signals from one nerve cell body to another. In the PNS, axons carry signals to muscles and glands or from sensory organs such as the skin. Each myelin sheath is formed by the concentric wrapping of an oligodendrocyte (CNS) or Schwann cell (PNS) process (a limb-like extension from the cell body) around the axon. Myelin reduces the capacitance of the axonal membrane. On a molecular level, in the internodes it increases the distance between extracellular and intracellular ions, reducing the accumulation of charges. The discontinuous structure of the myelin sheath results in saltatory conduction, whereby the action potential "jumps" from one node of Ranvier, over a long myelinated stretch of the axon called the internode, before "recharging" at the next node of Ranvier, and so on, until it reaches the axon terminal. Nodes of Ranvier are the short (c. 1 micron) unmyelinated regions of the axon between adjacent long (c. 0.2 mm – >1 mm) myelinated internodes. Once it reaches the axon terminal, this electrical signal provokes the release of a chemical message or neurotransmitter that binds to receptors on the adjacent post-synaptic cell (e.g., nerve cell in the CNS or muscle cell in the PNS) at specialised regions called synapses.

This "insulating" role for myelin is essential for normal motor function (i.e. movement such as walking), sensory function (e.g. hearing, seeing or feeling the sensation of pain) and cognition (e.g. acquiring and recalling knowledge), as demonstrated by the consequences of disorders that affect it, such as the genetically determined leukodystrophies; the acquired inflammatory demyelinating disorder, multiple sclerosis; and the inflammatory demyelinating peripheral neuropathies. Due to its high prevalence, multiple sclerosis, which specifically affects the central nervous system (brain, spinal cord and optic nerve), is the best known disorder of myelin.

Voorbeelden uit tekstcorpus voor myelin
1. Myelin repair normally occurs in the body spontaneously.
2. The myelin damage is irreversible and causes the neurological system to break down.
3. This destroys myelin, the fatty protective sheath around nerve fibres in the brain and spinal cord.
4. That damages the myelin, the material that coats nerve fibers in the brain.
5. Finding a way to repair damaged myelin is the ‘holy grail‘ of MS research.